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Transient A + B ~ 0 Reaction on Fractals: 
Stochastic and Deterministic Aspects 

G. Zumofen,  1 J. Klafter, 2 and A. Blumen 3 

In this paper we study the transient diffusion-limited A + B ~ 0 ,  Ao=B o 
annihilation via deterministic reaction-diffusion equations and via simulation of 
the stochastic many-particle problem. We show that the two approaches are not 
equivalent and that the deterministic expressions capture only part of the 
picture. A lower bound is derived for the density decay which indicates that the 
overall density follows the power law t -~ with c~=min(~/4, 1). Hierarchical 
oscillations superimposed on the power-law decay are observed for reactions on 
Sierpinski gaskets. 

KEY WORDS: A+B --+0; fractals. 

Diffusion- l imited b imolecu la r  react ions  A + B - - + i n e r t  on regular  and  
fractal  s t ructures  are of  much  interest.  The  t ime evolu t ion  of the par t ic le  
densit ies,  segregat ion phenomena ,  and  the dependence  on the d imen-  
s ional i ty  of the p rob l em have been s tudied  in detail .  (~-12) In former  works  
we ana lyzed  the p rob lem th rough  s tochast ic  s imula t ion  calculat ions.  (5'6) An 

analy t ica l  descr ip t ion  is poss ible  if one star ts  from the coupled  diffusion- 
reac t ion  equat ions  which for Eucl idean  latt ices have the form (1'2,1~ 

A(x,  t) = D V2A(x, t) - ~cA(x, t) B(x, t) 
(1) 

/~(x, t ) = O  V2B(x, t ) - - t eA(x ,  t ) B ( x ,  t) 

where A(x,  t) and  B(x, t) are the spat ia l  par t ic le  densi ty  d is t r ibut ions ,  D is 
the diffusion coefficient, and  ~c denotes  the b imolecu la r  reac t ion  rate. Equa-  
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tions (1) are far from being exact, since they are restricted to first-order 
density functions. Consequently, the reaction term -~:A(x, t)B(x, t) is 
only approximate since--at leas t~the joint probability density of A B 
pairs is needed for a correct descriptionJ 11) In this study we consider an 
equal number of A and B particles: Ao=B o, which implies A(t)=B(t) 
at all times. The analysis of Eq. (1) is simplified by setting 
q(x, t ) =  A(x, t ) -  B(x, t) and s(x, t ) =  A(x, t )+  B(x, t), which leads to 

~r t) = D V2q(x, t) (2) 

~(x, t) = O V2s(x, t) - (x/2)[s2(x, t) - q2(x, t)] (3) 

We point out that Eq. (2) holds exactly irrespective of the approximation 
introduced in expressions (1) for the description of the reaction term. m) 
The time evolution of the densities is obtained from the spatial or ensemble 
average: A(t)= (A(x, t ))x = 1/2(s(x, t))x.  

In this paper we proceed as follows: We first rewrite the deterministic 
approach, Eqs. (1)-(3), for discrete lattices so that the equations hold 
generally also for fractals. From the density difference function we derive " 
an expression for a lower bound for the density decay which holds 
generally both for regular and for fractal structures. We solve the deter- 
ministic equations numerically for Euclidean lattices and Sierpinski gaskets 
and compare the results with those obtained from simulations of the 
stochastic problem. Our findings show that the overall decay is well 
represented by t -~, ~ = min(d/4, 1), where ~r is the spectral dimension for 
fractals and d for regular lattices. The application of this decay law for 
fractals has been recently a matter of debate. ~4'5'9'15'16) 

For discrete lattices Eqs. (2) and (3) are given without loss of 
generality as a system of coupled differential~lifference equations: 

0(xj, t ) = / "  ~ [q(x i, t ) -  q(xj, t)] (4) 
i~aj 

$(xj, t )=F ~, [s(xi, t ) - -s(xj ,  t)] --(~/2)[s2(xj,  t)--q2(xj,  t)] (5) 
i~ffj 

where xj are the sites, aj denotes the nearest neighbors of site j, and F is 
the hopping rate between nearest-neighbor sites. Equations (4) and (5) 
hold for fractals as well as for Euclidean lattices; they offer a means to 
avoid the problem of how to generalize the Laplacian to fractals. The 
solution of Eq. (4) can be written in terms of the Green's function 
P(xj, t; Xo, 0), the conditional probability to be at xj at time t having 
started at Xo at time zero. One has 

q(xj, t) = ~ P(xj, t; xi, 0) q(x~, 0) (6) 
i 
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where q(x, 0) denotes the initial random configuration. (q(x, t ))x is zero at 
all times and the second moment averaged over space and over initial 
configurations is 

{ q 2 ( t ) ) = ( q Z ( x , t ) ) x = N  1 2 P(xj, t ;x , ,O)q(x i ,  O) (7) 
J ' ~ / i n i t .  c o n f i g .  

Here N denotes the number of lattice sites considered in the model. As 
initial distributions we take (qo/2 being the initial occupation probability 
for A or B particles) 

q(x s, O) = - 1 

0 

with probability qo/2 

with probability qo/2 

with probability 1 - q o  

(8 )  

Inserting Eq. (8) into Eq. (7), the configurational average is straight- 
forward, since the P(XJ, t; x~, 0) are independent of the initial configura- 
tion: 

(q2 ( t ) )  = N  -1 ~ P(xj, t; x i, 0) P(x~, t; x k, 0)(q(x~, 0) q(x~, 0))init . . . .  rig 
j,i,k 

= qoN 1 2 P(XJ, t; x~, 0) P(xj, t; x~, 0) c~ 
j,i,k 

= qo u - 1  2 P2(xJ, t; xi, 0) (9) 
j,i 

To proceed, we consider the Chapman-Kolmogorov equation: 

P(xj, t; xi, 0) = 2 P(xj, t; Xm, t') P(x,n, t'; x i, 0), 0 ~< ' -<: t ~ t ( 10 )  
m 

which applies for all Markovian processes (irrespective of lattice structure 
and dimension, i.e., also for fractals). Furthermore, for the system given by 
Eqs. (4) and (5), the propagator is symmetrical (vide infra): 

P(xj, t;xi, 0) = P(xi, t ;xj,  0) ( l l )  

By inserting Eqs. (10) and (11) into Eq. (9), we find that 

(qZ( t ) )  = q o N  1 2 P(xj ,  2t; xj, 0) 
J 

= qoP(O, 2t) (12) 

where P(0, t) is the probability to be at the origin after time t, averaged 
over all starting sites. Equation (12) relates (q2 ( t ) )  to the well-understood 
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autocorrelation function P(0, t), whose leading behavior follows asymptoti- 
cally ~7) the power law: P(O, t )~  ant N/2. The prefactor aN depends on the 
details of the lattice. 

We note that the symmetry of the propagator, Eq. (11), is fundamental 
for the derivation of Eq. (12). The symmetry is obvious for ordered lattices. 
For disordered lattices, Eqs. (4) and (5) correspond in the discrete picture 
to the "blind-ant" model: all rates between neighboring sites are equal, so 
that particles stay longer on sites with low coordination number z. The 
time needed to go along any path from xi to xj (including stops) is identi- 
cal to that needed for the reverse path. To test this conclusion, we have 
focused on percolation clusters. We determined the propagator by solving 
the master equation: 

P(xj, t; Xo, to) -- F ~ [P(xi, t; x o, to) - P(xj, t; Xo, to)] (13) 
i~aj 

where aj denotes the nearest neighbors of site j on the cluster. As initial 
condition we took 

P(xj, 0; Xo, 0) = 6x> x0 (14) 

Our numerical results support the conclusion that for propagators on 
percolation clusters, as defined in Eqs. (13) and (14), the symmetry relation 
(11 ) holds. 

We continue by discussing the implications of Eq. (12) for the density 
decay. From Eq. (6) one can view q at long times as being a large sum of 
terms _+ 1 or zero, weighted with the corresponding P factors; thus, for 
large t the central-limit theorem applies, so that q(x, t) becomes Gaussian- 
distributed. (2. ~3) Therefore 

q(t) =-- (Iq(x, t ) l  )• = [ (2/rc)( q2(t) ) ] 1/2 

holds in general. If one can now approximate s ( t )=  (s(x, t ) )  X through 
q(t), then by using Eq. (12) it follows that 

A(t) = (A(x, t))x = 1/2s(t)> 1/2q(t)= [qoP(0, 2t)/2~] 1/2 (15) 

which, considering the power-law description for P(0, t), leads to 

A( t ) > C NA~/2t -a/4 (16) 

with the constant being Cd=7~-1/2('C/47~) d/4 for Euclidean lattices and 
Ca= (aa/~) 1/2 (~/2) a/4 for Sierpinski gaskets. Here, v is the hopping time, 
which for structures where the sites have a unique coordination number z 
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is ~ -~=  zF. For hypercubic lattices, setting D = (2~) -1, Ca is identical to 
the results of ref. 2. Thus expressions (15) and (16) derived for the general 
case including fractals reproduce exactly the results of Euclidean lattices. (2) 

The point is now whether setting q(t)~-s(t)  is permitted. (l'z'H 13) To 
settle the question, one has to center on Eq. (5), which, averaging over all 
lattice sites, gives 

(~(t) ) = (tr (sZ(t) ) - (q2( t ) ) ]  (17) 

Here, it is of interest to see if and how fast the ratio ( sZ( t ) ) / (q2 ( t ) )  tends 
toward the value of 1. Furthermore, we check on the extent to which s(x, t) 
and q(x, t) are approximately Gaussian-distributed. A measure for this is 
how fast the ratios ( q 2 ( t ) ) m / ( l q ( t ) l )  and (s2( t ) ) l /2 / (s ( t ) )  reach the 
asymptotic value (re/2) ~/2. 

One should note that for 3 > 4 ,  Eq. (16) would lead to a decay t -~/4 
which is faster than t ~. In this case we argue that (q2( t ) )  can be 
neglected in Eq.(17) as compared to (s2(t)) ;  thus, assuming that 
(s2(t)) 1/2~ ( s ( t ) ) ,  it follows that ( s ( t ) )  obeys classical kinetics, i.e., 
( s ( t ) )  ,,~ t -1. This imposes an upper marginal dimension of d = 4  and the 
corresponding limitation for the validity range of Eqs. (15) and (16). 
Furthermore, the ratio ( S 2 ( t ) ) / ( q 2 ( t ) )  should diverge for d >  4. (7'12) As a 
major consequence, we find that Eqs. (15) and (16) provide a lower bound 
to A(t) for 3 <  4. 

We studied these points by solving numerically Eqs. (4) and (5). For 
the numerical treatment the ratio ~c/r-1 has to be fixed; for comparison to 
former approaches (m we took ~c as being equal to 2/z. 

In Fig. 1 various quantities are shown for d = l .  To clearly 
demonstrate the region of long-time behavior, the quantities were multi- 
plied by their expected asymptotic forms, such that the asymptotic patterns 
appear as horizontal lines. A lattice of 4 x 105 sites was used. Plotted are 
( [q( t)[ ) t 1/4/(2 C 1 ) and ( s ( t ) )  tl/4/(2C 1 ).' The displayed curves demonstrate 
that (]q(t)[)  quickly reaches the asymptotic regime, whereas ( s ( t ) )  
relaxes considerably more slowly. In the region of moderate times ([q(t)[) 
and ( s ( t ) )  differ significantly, and (s ( t ) ) ,  as presented in Fig. 1, shows a 
characteristic hump. 

These patterns are compared with results taken from Monte Carlo 
(MC) calculations which were performed on Euclidean lattices and 
Sierpinski gaskets according to the following procedure: Initially equal 
numbers of A and B particles were placed randomly on the lattice and 
typically 106-107 particles were used. Then a particle was picked randomly 
and was moved to a next neighbor position while simultaneously the time 
was incremented by the inverse of the number of particles still present in 
the sample. If one particle attempted to move onto a site occupied by a 
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Fig. 1, Results from Monte Carlo (MC) simulations and from the deterministic approach for 
d =  1. (a) MC result: Auc( t  ) tl/4/C l. Deterministic result of the reaction-diffusion equations: 
(b) (s(t))tl/4/(2C1), (c) ([q(t)l)tl/4/(2C1), (d) (s2(t)) / (q2(t)) ,  (e) ( s ( t ) ) / ( s2( t ) )  l/z, 
(f) ( Iq( t ) l ) / (q2( t ) ) l /2 .  The dash-dotted lines indicate the values 1 and (n/2) 1/2. The initial 
concentration is Ao = Bo = 0.05. 

particle of the opposite species, then both particles were removed from the 
lattice. The simulation results plotted as AMc(t)tl/4/C1 [-curve (a) in 
Fig. 1] show the same characteristic behavior as (s(t)) [-curve (b)]; 
however, AMc(t) relaxes significantly more slowly to its asymptotic value 
than (s(t)). We view these differences between MC and deterministic data 
as resulting from the approximations introduced in the diffusion-reaction 
equations (1)-(3), which are thus limited in their ability to describe pro- 
cesses as complicated as particle annihilation. To complete the analysis, we 
display in Fig. 1 also the ratio (sZ(t))/(qZ(t)) [-curve (d)], which shows 
a slow convergence to the value one. Finally, also plotted are the two ratios 
(q2(t))l/z/(lq(t)l) and (sZ(t))l/2/(s(t)). Both ratios converge to the 
asymptotic value of (7z/2) 1/2, which is consistent with q and s as being 
Gaussian-distributed at long times. Again the sum variable relaxes more 
slowly than the difference variable to its limiting value. 

In Fig. 2 we present the same quantities as in Fig. 1 obtained for a 2D 
Sierpinski gasket. Equations (4) and (5) were solved on a gasket at the 
l l t h  iteration stage. The MC simulation was performed on a gasket at the 
14th iteration stage. We remark the resemblance in the behavior of all 
quantities considered on the 2D Sierpinski gasket with those reported for 
the 1D lattice. Both the MC and the numerical method behave in similar 
fashion on regular lattices and on fractals; we conclude that the same 
limitations of the diffusion-equation method also applies to fractals. 
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Fig  2. As in Fig. 1, but for a 2D Sierpinski gasket. (a) From MC calculations 
AMc(t) t~/4/C~; and from the solution of the reaction-diffusion equations: (b) 
(s(t))ta/4/(2t]~), (c) (]q(t)])t~/4/(2C~), (d) (s2(t)) / (q2(t)) ,  (e) ( s ( t ) ) / ( s2( t ) )  1/2, 
(f) ( ]q( t ) ] ) / (qZ(t ) ) l /2 .  The dash-dotted lines indicate the values 1 and (n/2) 1/2. The initial 
concentration is A0 = B0 = 0.05. 
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Fig. 3. Time evolution of the particle densities on Sierpinski gaskets. The MC simulations 
are displayed as A(t) t a/4 and are given as full lines. The theoretical predictions 
[AoP(0, 2t)/n]l/2 t~/4 are given by dashed lines. The embedding Euclidean dimension d is as 
indicated and the initial concentration was in all cases A0 = Bo = 0.2. 
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To emphasize this analysis further, we focus now on details typical for 
hierarchically-built structures. For these the autocorrelation function 
P(0, t) shows an oscillatory behavior which is superimposed on the 
asymptotic power-law decayJ 17'18) The periods of these oscillations are 
related to the typical residence time of diffusing particles on hierarchical 
substructures and the oscillations amplitudes are larger for higher dimen- 
sions d. From Eq. (11) it is clear that (q2( t ) )  should also follow the 
oscillatory behavior. Furthermore, the oscillations should also be visible in 
A(t). This is in fact the case and is demonstrated in Fig. 3, where the decay 
is displayed for Sierpinski gaskets embedded in Euclidean lattices of dimen- 
sions d = 2 ,  6, and 13. In order to highlight the oscillatory behavior, 
the simulation results are plotted as AMc(t) t ~/4. They are compared 
with Eq. (15), [AoP(O, 2t)/n]l/zt ~/4, where P(0, t) was obtained from 
independent numerical calculationsJ 18) 

For a Sierpinski gasket in d =  2 the oscillations are hardly detectable 
and the MC calculation tends smoothly to the P(0, t)-type expression; 
however, the relaxation to the asymptotic behavior occurs at times 
t/z > 10 4. For Sierpinski gaskets in (d=  6)- and (d=  13)-dimensional spaces 
the oscillations are clearly visible: also the periods and the phases are in 
qualitative agreement with the P(0, t)-type forms. For d =  2 and d =  6, the 
deviations between simulation and P(0, t) evaluation are of the order of 
5-10% at long times. For d =  13 the oscillatory behavior is again very well 
reproduced; on the other hand, care has to be used for t values larger than 
t/v > 10 4, where finite-size effects begin to be felt. 

Fig. 4. 

5O 

5 

1 . . . . . . . .  i . . . . . . .  

I0 ~//T 102 

The ratio (s2(t))/(q2(l)). Results are plotted for hypercubic lattices of dimensions 
d= 1-5. 
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In Fig. 4 we present the ratio ( s 2 ( t ) } / ( q 2 ( t ) }  calculated for regular 
lattices for dimensions d =  1 and d =  5. Lattice sizes of some 106 sites were 
used to solve Eqs. (4) and (5). For  d =  2 the convergence to the limiting 
value of 1 is still visible, a l though slower than in d =  1; for d =  3 the 
convergence is even slower. The marginal  behavior  for d - - 4  is evident: 
( s 2 ( t ) ) / ( q 2 ( t ) }  reaches a plateau for t / ~ _  10; furthermore,  in d = 5 ,  
( s 2 ( t ) ) / ( q 2 ( t ) }  increases steadily with time. We infer that  approximat ing 
A ( t )  th rough  q(t )  is justified only in low-dimensional  spaces. 

Concluding,  our  analysis has shown that  for low-dimensional  lattices 
the deterministic approach  based on reaction-diffusion equations provides 
a reasonable description of  the reaction process. In fact, expression (15) 
represents a lower bound  for the density decay, so that  Eq. (16) follows: 
A ( t ) ~  t -~  with c~ = min(d/4, 1). The numerical results obtained from both  
the deterministic and the stochastic approaches  support  these findings. 
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